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 

Abstract—This paper presents the development of sectored 

antenna array and modified probabilistic neural network 

positioning algorithm for an indoor positioning system (IPS). 

Firstly, a new hexagonal IPS station is composed of six 

printed-circuit board Yagi-Uda antennas and Zigbee modules. 

It is designed to obtain the signals between an object and the 

station. Then, a modified probabilistic neural network (MPNN) 

is applied to estimate the accurate position of the object with the 

signal strength. From the experimental positioning results 

shown, the developed IPS system has the outperformance in an 

8x8 square meters indoor scene. The proposed indoor 

positioning technique not only has a high positioning accuracy, 

but also is an effective solution to solve the difficult issue of 

positioning station deployment. 

 
Index Terms—indoor positioning, Yagi-Uda antenna, 

modified probabilistic neural network, received signal strength.  

 

I. INTRODUCTION 

Due to the rapid developments of wireless communication 

technique and personal network [1-3], wireless technology 

has been widely applied into the application of indoor 

positioning system (IPS). So far, many wireless 

communication technologies such as wireless local area 

network (WLAN) [4-7], wireless sensor network (WSN) 

[8-9], radio frequency identification (RFID) [10-12], 

Bluetooth [13-14], Zigbee [15-16], etc. have been wildly used 

in the sensing technique of IPS. In fact, the positioning 

algorithm also plays an important role in the application of 

IPS. It is the method used for determining the object’s 

location. Nowadays, three algorithms, including 

triangulation, scene analysis and proximity, are mainly 

methods used for the object’s position estimation [17-22]. In 

lots of positioning systems, the received signal strength 

(RSS) values sensed from the known reference nodes are 

used to calculate the coordinate of unknown objects. Thus, 

multiple wireless stations are required for RSS based IPSs 

with appropriate installation. Undoubtedly, such a condition 

would increase the difficulty of positioning environment 

deployment and the necessary equipment cost.  

Cidronali et al [23] designed a new switched beam array 
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antenna which was used in wireless indoor positioning. The 

antenna is intended to augment a wireless devices operating 

as coordinator or base station, and its design has been 

optimized for installation on the ceiling of any large indoor 

space. Similar to [23], this research presents a novel indoor 

positioning scheme which is composed of array antennas and 

Zigbee modules. The information of signal angle and RSS are 

used to estimate the object’s location.  

In recent years, NN technique has been employed into the 

positioning applications [24-30] due to its powerful learning 

and mapping capabilities. In this research, PNN model was 

applied to perform the positioning work. The whole paper is 

organized as follows. The proposed indoor positioning 

system is presented in Section 2. Section 3 describes MPNN 

model for the positioning estimation. Section 4 presents the 

relevant experiments and results. At last, a conclusion is 

given in Section 5. 

 

II. INDOOR POSITIONING SYSTEM 

The proposed indoor positioning scheme is shown in Fig. 1. 

It is composed of the indoor positioning station and the 

embedded positioning device. The indoor positioning station 

consists of a six directional sectored antenna array, a module 

with six Zigbee sensors and a microcontroller for transmitting 

the RSS signals. The diagram of the sectored antenna array is 

presented in Fig. 2. The embedded positioning device 

consists of a MPNN model and an ARM-based system. It is 

used to perform the positioning work and then display the 

result on the screen of ARM system.  

 

 
 

Fig. 1 The proposed indoor positioning scheme. 
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Fig. 2 The diagram of sectored antenna array. 

 

In this research, the specified sectored antenna array used 

for developing the indoor positioning system. This array is 

composed of six printed-circuit board (PCB) Yagi-Uda 

antennas with hexagonal arrangement which can provide 360 

degrees coverage. Thus, in our approach, only one station is 

demanded for IPS and all component parts are small for 

installation. 

The Yagi-Uda antenna is one of the most successful radio 

frequency directional antenna. It has the characteristics of 

gain and directivity so that it is able to receive or transmit 

radio in a specific direction. Fig. 3 shows the figures of 

Yagi-Uda antenna and its radiation pattern [31]. 

 

 
 

Fig. 3 Yagi-Uda antenna and radiation patterns. 

 

Generally, the size of Yagi-Uda antenna is too large to be 

used in the real indoor positioning application. However, the 

PCB Yagi antenna has been proven that it is an economical 

and effective antenna with directional radiation property for 

the practical using in indoor positioning work. Fig. 4 shows 

an example of Yagi-Uda antenna applied to Zigbee wireless 

sensor network module under the bandwidth of 2.4 GHz 

condition. And, Fig.5 is the measured radiation patterns on 

different azimuth directions of PCB antenna. 

 

 
 

Fig. 4 The simulation results of PCB Yagi-Uda antenna. 

 

 
 

Fig. 5 The measured radiation patterns of PCB antenna on zx, 

xy and zy directions. 

Fig. 6 presents the implemented IPS station which has a 

microcontroller, six Zigbee wireless module and six PCB 

antennas. 

 

 
 

Fig. 6 The proposed hexagonal IPS station. 

III. MPNN MODEL 

In this research, MPNN was applied to estimate the 

coordinates of object and it was initially proposed by Zaknich 

Error! Reference source not found.. The architecture of 

MPNN is shown in Fig. 7. It has one input layer, one pattern 

layer, one summing layer and one output layer. The detailed 

MPNN algorithm is described as follows. Suppose a set of 

class vector C  i.e. IPS training data is given by 

 ),(,),,(),,( 2211 mm ycycyc C                           (1) 

where m  is the number of class vector C . Each ic  contains 

six RSS signals of antenna array and iy  is the corresponding 

output of class ic . Thus, for each input x, the probability 

density function (PDF) of MPNN is defined as 
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where   is the smoothing parameter of Gaussian function. 

Then, the output ŷ  i.e. the coordinate of object can be 

obtained by 
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where iz  is the number of the number of x associated with ic . 

 

 
Fig. 7 The architecture of MPNN. 
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IV. POSITIONING EXPERIMENTS 

In this research, an 8x8 square meters indoor field as 

shown in Fig. 8 is used for the experiments. In order to test 

the indoor positioning system developed, 288 and 440 

positions (features) within the intervals of 0.5 meter and 0.4 

meter were measured twice at different time periods. The first 

288 and 440 position data are used for MPNN training and 

the second 288 and 440 position data are used for MPNN test. 

Besides, another two position data, 392 and 704 positions are 

randomly measured with the intervals of 0.5 meter and 0.4 

meter. Both two data sets are used for MPNN positioning 

tests either. 

 

 
 

Fig. 8 The indoor experiment field. 

 

Table 1 lists the statistic errors of 288 and 440 positional 

estimations by MPNN with 288 points training. The mean 

absolute error (MAE) and standard deviation (Std.) of errors 

are used to indicate the positioning condition. Table 2 lists the 

statistic errors of 288 and 440 positional estimations by 

MPNN with 440 points training. 

Table 1. The statistic errors of 288 and 440 positional 

estimations by MPNN with 288 points training. 

σ 288 points 440 points 

 
MAE 

(cm) 

Std. 

(cm) 

MAE 

(cm) 

Std. 

(cm) 

σ=0.1 105.109 69.258 110.168 75.7654 

σ=0.09 89.8082 61.5673 98.9441 68.9892 

σ=0.08 75.4257 53.6842 89.2857 62.5117 

σ=0.07 62.025 45.6867 81.6179 56.716 

σ=0.06 48.701 38.331 75.2754 54.064 

σ=0.05 34.6977 32.2786 71.5156 55.0467 

σ=0.04 21.244 26.3896 71.7191 59.4848 

σ=0.03 10.253 18.4068 76.0491 66.5151 

σ=0.02 3.35754 11.1216 82.351 75.8395 

σ=0.01 2.01998 12.1287 87.7202 79.7835 

Avg. 45.26411 36.88525 84.46461 65.47159 

Std.: Standard deviation 

 

 

 

Table 2. The statistic errors of 288 and 440 positional 

estimations by MPNN with 440 points training. 

σ 288 points 440 points 

 
MAE 

(cm) 

Std. 

(cm) 

MAE 

(cm) 

Std. 

(cm) 

σ=0.1 114.443 77.3033 108.025 75.3758 

σ=0.09 100.455 70.4024 94.5683 67.6896 

σ=0.08 87.612 63.4382 81.6917 59.917 

σ=0.07 76.8114 56.4131 69.0089 52.4475 

σ=0.06 68.3944 50.0595 55.557 45.3722 

σ=0.05 62.3424 45.9681 40.3179 37.8829 

σ=0.04 59.2948 45.8955 24.0687 28.2314 

σ=0.03 63.1633 49.0358 9.78353 15.7917 

σ=0.02 70.7702 55.8473 2.22647 8.56119 

σ=0.01 77.6275 59.9527 0.864431 7.62743 

Avg. 78.0914 57.43159 48.61119 39.88967 

Std.: Standard deviation 

 

From the results of Table 1 and Table 2 shown, it can be 

clearly found that MPNN could have quite well positioning 

accuracy when the object’s position is exactly on the points of 

MPNN’s training. The best MAEs of 288 points test and 440 

points test could reach to 2.01998 cm (σ=0.01) and 

0.864431cm (σ=0.01), respectively. But, for MPNN model 

with 288 points training, its best test MAE to 440 points is 

71.5156 cm (σ=0.05). Similarly, for MPNN model with 440 

points training, its best test MAE to 288 points is 59.2948 cm 

(σ=0.04). In fact, such a situation is predictable. It is because 

of MPNN model is viewed a classifier which is used to 

estimate the object’s position in accordance with the features 

(RSS signals) sensed. Thus, we believe that the positioning 

accuracy could be greatly improved if MPNN has mass and 

enough training data.  
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