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 

Abstract—The emerging accumulation-based emerging 

perimeter control strategy in the context of Macroscopic 

Fundamental Diagrams (MFD) need to predict accumulations 

dynamically. The objective of this study is to present short-term 

accumulations forecasting problem. Forecasting models and its 

inputs vectors of traffic accumulations should be studied firstly. 

To avoid the drawback of fuzzy descriptions for link traffic 

states derived by traffic arrivals, this study newly proposes a 

method to monitor the dynamics of link accumulations in the 

context of MFDs. This method yields a full description of the 

MFD by relating the number of circulating vehicles 

(accumulations) to network flow (arrivals). The precise traffic 

data are extracted from discrete records of automatic license 

plate recognition database. In addition, this paper studies 

possible applications and accuracy levels of four machine 

learning models for short-term accumulation forecasting: 

back-propagation neural network (BPNN), wavelet neural 

network (WNN), radial basis function neural networks 

(RBFNN) and support vector regression (SVR). WNN and 

BPNN models are found to be adaptive and have accuracy levels 

only a sixth that of RBFNN and SVR models. 

 
Index Terms—urban traffic system dynamics; traffic state 

estimation; short-term accumulations forecasting; automatic 

license plate recognition data; machine learning 

 

I. INTRODUCTION 

Overload vehicles in urban road sections can lead to 

congestion, even gridlock in network-wide. The dynamic 

characteristics of discrete vehicles should be investigated to 

deal with intelligent traffic management technologies [1,2]. 

Modeling and forecasting vehicular traffic flows have been 

proposed for decades [3,4]. For example, most signal control 

strategies start with predictions of traffic arrivals, which are 

highly rely on the dynamics of arrivals at signalized 

intersections [5,6]. However, capturing the discrete traffic 

arrivals dynamics cannot give transportation engineers the 

whole picture of network congestion. Local control strategies 

relying on short-term traffic arrivals forecasting fail to care 

for the distribution of network traffic density. Besides, 

applications of control approaches based on microscopic 

modeling of traffic flow are confronted with some obstacles, 

such as huge complex of control strategies and 

unpredictability of driver navigations. Instead of microscopic 

modeling of traffic arrivals at disaggregate level, 

macroscopic modeling of traffic flows at aggregate level was 
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proposed for macroscopic monitoring and control in urban 

road network, which could capture the aggregation 

characteristics of traffic flow [1,7,8]. 

For a further attempt in this direction, the purpose of this 

paper is to design a methodology to model and forecast 

accumulation of vehicles in freeways that play the role of 

transferring flows. This problem is a complicated one as the 

nonlinear accumulations in parts of network is caused by 

disproportionate relationship between vehicle arrivals and 

departures. Accurate modeling of nonlinear accumulation of 

vehicles as a continuous phenomenon has to take 

disproportionate relationship into consideration. This paper 

develops a method for modeling the nonlinear accumulations 

using automatic license plate recognition data (ALPRD). The 

suggested modeling method can provide accumulations as 

constant input vectors of short-term forecasting models. This 

paper also presents a short-term accumulations forecasting 

problem based on machine learning methods with a new 

insights in traffic accumulation prediction. After this 

construction, the proposed solution framework would be 

regarded as a bridge between microscopic traffic flow 

dynamics and macroscopic system dynamics for traffic 

monitoring and management. 

The paper is organized as follows. Section 2 introduces the 

background and presents short-term accumulations 

forecasting problem. Section 3 shows four basic models for 

short-term freeway accumulations forecasting. Section 4 

presents a data-driven approach for numeric inputs by 

modeling freeway accumulations. Section 5 discusses the 

experimental results. Section 6 concludes the paper and 

discusses the future research. 

II. SHORT-TERM ACCUMULATIONS FORECASTING PROBLEM 

A. Problem Formulation 

With the disproportionate number of input and output of 

vehicles, accumulations have made a significant contribution 

to saturated and over-saturated states of urban road networks. 

If accumulations exceeds the capacity of subnetworks, the 

arrivals of vehicles would decrease in the flow and even lead 

to gridlock in subnetworks. In order to propose perimeter 

control schemes to prevent saturated and over-saturated states 

of subnetworks, the first thing transportation engineers need 

to do is capture dynamics of accumulation in road sections 

[9]. Modeling and forecasting of aggregation characteristics 

of traffic flow in arterial freeways can be utilized to replace 

tasks of monitor and predict traffic flow in microscopic 

perspective [10]. The dynamic characteristics of traffic flow 

are derived from traffic arrivals, accumulations and 
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departures. These can be monitored by strong detection 

components regardless of travel patterns and dynamic 

origin-destination (O-D) conundrums in the context of 

Macroscopic Fundamental Diagrams (MFD) [11]. 

Modeling of network dynamics with an aggregation 

framework was proposed in [1], and computed by empirical 

loop data and taxi GPS data [2,12]. The relationship between 

network vehicle density (related to accumulation) and 

network space-mean flow have been investigated as MFD 

[2]. These papers showed that accumulations both in 

subnetworks and links are not sensitive to different demands. 

Furthermore, a generalized macroscopic fundamental 

diagram (GMFD) for urban freeways was developed to relate 

accumulations to spread of density, which showed 

inhomogeneous distribution of accumulations in network 

[13,14]. The dynamic pattern of accumulation can be used to 

estimate traffic state of subnetworks. 

The MFD-based control strategies need real-time data 

which can be monitored and obtained by traffic control 

system, i.e., the dynamic characterization of MFD which is 

consist with mathematical needs of linear control system. 

Actually, MFD-based linear control systems are often based 

on distinct variables of the MFD and direct sequential 

method. The dynamic processes of MFD can be decomposed 

into nonlinear time-varying patterns of network average flow 

and network average density. 

B. Problem Definition 

The input-output systems of transportation networks can 

be considered as sets of inter-connected reservoirs (grids that 

decomposed from urban area). Dynamic characteristics of 

traffic flow can be used to capture internal flow and 

transboundary flow of inter-connected reservoirs. In 

particular dynamics characteristics of accumulations in 

subnetworks can be used to improve mobility in 

network-wide. For multi-reservoirs systems, accumulations 

could be dynamically managed by restricting the transfer of 

flows between inter-connected reservoirs with 

accumulation-based (AB) strategy for urban areas [1,15]. 

Freeways in urban road network can be regarded as the major 

pipelines that transfer flows between inter-connected 

reservoirs. Similar to major pipeline congestion for reservoir 

system, congested freeway accumulation can be used to 

express main aggregate characteristics of subnetwork 

congestion. If we can monitor characteristics of traffic 

congestion in reservoirs, strategies that based on short-term 

forecasting of the macroscopic system dynamics could be 

used to complete optimal perimeter control. 

Time-varying accumulations in sections can be regarded as 

predictable variable with time series data [2,11]. 

Accumulations may vary in a dynamic pattern over a regular 

interval, which mainly caused by the disproportionate 

relationship of arrivals and departures. Once the optimal 

perimeter of accumulations in reservoirs is determined, 

accumulations could be regulated by restricting the transfer of 

flows between abutting and separated reservoirs. The most 

effective strategy is to keep transfer efficiency of freeways as 

close to optimal state, which means that keep accumulations 

as close to optimal value. A development effort is also needed 

to predict accumulations dynamically that would support 

optimal perimeter control schemes for improving 

accessibility in subnetworks [1,2]. 

Feasibility study of accumulations prediction problem 

have been argued in [1] and [11]. The two references 

suggested that forecast-based approaches of accumulations 

prediction could be effective if complemented with real-time 

monitoring of the state variables. With accumulations as a 

state perimeter, a prediction model for capture the evolution 

of accumulations was proposed in [11]. The model operates 

by initial accumulations and future values of perimeter 

control inputs with loop detector data. It would be difficult to 

observe outflows by loop detectors, so that the mentioned 

studies are based on the postulate that trip completion rate is 

proportional to production [2,11]. However, the outflows of a 

subnetwork or section are actually independent of its inputs. 

The postulates is a marked difference from the macroscopic 

modeling aggregation hypothesis originally presented in [1]. 

The statistics information based on loop detector data can 

only be regard as fuzzy accounting for road traffic states. To 

all appearance, the availability of data limited the study on 

dynamics of accumulations and affected the development of 

optimal perimeter control schemes based on short-term 

macroscopic traffic flow forecasting. The further scrutiny 

should include field experiments considering 

disproportionate relationship between inputs and outputs. 

III. MODELS 

In practice, short-term accumulations forecasting is useful 

for a range of purposes, such as real-time monitoring and 

perimeter control. Accumulations is a critical element which 

could provide the basis of reliable tools that anticipate results 

of traffic management policies. For example, policies based 

on short-term forecasting of macroscopic system dynamics 

could be effective if complemented with real-time monitoring 

of the state variables [1]. 

Short-term forecasting models can be used to capture 

urban link accumulations dynamically. Short-term traffic 

flow forecasting is considered as an excellent field for 

developing and testing complex prediction algorithms based 

on current and past traffic information, which can be used to 

model traffic characteristics such as volume, density and 

speed, or travel times, and produce anticipated traffic 

conditions [16,17]. Some empirical computational 

intelligence-based approaches like neural networks, fuzzy 

and evolutionary algorithm are used in short-term traffic flow 

prediction problems. In this section, four data-driven models 

are presented to predict short-term accumulations 

dynamically, including back-propagation neural network 

(BPNN), wavelet neural network (WNN), radial basis 

function neural networks (RBFNN) and support vector 

regression (SVR). 

A. Back-propagation Neural Network 

Back-propagation neural network (BPNN) has a powerful 

ability of non-linear interpolation by using a supervised 

learning method and feed-forward architecture, which can be 

used for traffic flow forecasting [18] and risk prediction [19]. 

BPNN is trained by training algorithm in order to obtain the 

ability of memory and prediction. The output of hidden layer 
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is calculated with the following formula Eq. (1):  

ljaxwfjH jiij

n

i

1,2,...,=)(=)(
1=

           (1) 

where kxxxX ,...,,= 21  is the vector of inputs, )( jH  is 

the output of thj   hidden node, ijw  is the weight for the 

connections between the input layer i  and hidden layer j . 

f  is the active function of hidden layer neurons as Eq. (2):  

1))(exp(1=)(  xxf    (2) 

The formula of output layer is as Eq. (3):  
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where jkw  is the weight for the connections between the 

hidden layer j  and output layer k . 

BP neural networks are trained by a supervised learning 

algorithm. The BP network learning process includes two 

stages: the first stage is to input the known learning samples 

array and setting up the network structure, the second stage is 

to modify the weights and thresholds of the network in an 

iterative way so that the trained network fits the training 

samples well. The whole training of the BPNN is completed 

until the overall error between calculated and desired output 

is less than error criteria, or the number of iteration reaches 

the fixed value. 

B. Wavelet Neural Network 

Wavelet neural network are based on the BPNN network 

and a wavelet transform has properties that are superior to a 

conventional Fourier transform, which can be used for traffic 

flow forecasting [20] and traffic incidents detection [21]. The 

WNN consists of three layers: input layer, hidden layer and 

output layer. All nodes in each layer are connected to the 

nodes in the next layer. 

WNN is implemented with the wavelet function and 

training algorithm. The output of hidden layer is calculated 

with the following formula Eq. (4):  

ljabxwfjH jjiij

k

i

j 1,2,...,=))/((=)(
1=

    
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where )( jH  is the output of the number thj   of 

hidden nodes, ijw  is the weight for the connections between 

the input layer i  and hidden layer j . )( jH  is taken as a 

Morlet mother wavelet with the following formula Eq. (5):  

)
2

(exp)(1.75cos=)(
2x

xxf                                       (5) 

The formula of output layer is as Eq. (6):  

mkiHwkp jk

l

j
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where jkw  is the weight for the connections between the 

hidden and output layer. The whole training of the WNN is 

completed until error satisfies the given error criteria, 

otherwise, return to predict the output again. 

C. Radial Basis Function Neural Network 

Radial Basis Function Neural Network (RBFNN) is a 

three-layer feed-forward neural network with a supervised 

algorithm and has been employed for classification and 

interpolation regression [23], which can be used for traffic 

flow forecasting [23-25] and traffic incidents detection [26]. 

The RBFNN is approximate continuous function with a 

prospected accuracy, which includes three layers: an input 

layer, a nonlinear hidden layer (radial basis layer) and a linear 

output layer. The real output in output layer is calculated 

using Eq. (7):  

  
1

( ) / 1        
k
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j
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
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where X  is input vector of the network, sy  is the ths   

network output, )(ka  represents input patterns extracted 

from X , jsw  is the weight of the link between thj   

hidden neuron and ths   output neuron, jC  is the center of 

the thj   RBF unit in the hidden layer, and j  is the width 

of the thj   unit in the hidden layer.   denotes a basis 

function which is most generally instantiated by a Gauss 

function as Eq. (8):  

  2
2( ) exp / 2 1,2,3,...,        j j jr a k C j p      

(8) 

where r  is the variable of radial basis function  . 

D. Support Vector Regression 

Support Vector Regression (SVR) is employed to tackle 

with problems of function approximation and regression 

estimation [27], which can be used for traffic flow forecasting 

[28] and traffic incidents detection [29]. In general, the 

approximating function in SVR takes the following linear 

form Eq. (9):  

bxwxp )(=)(                                                            (9) 

where x  is input features, w  is weight vector,   is the 

high-dimensional feature space, which is non-linearly 

mapped from the input space and b  denotes the bias. 

The following convex optimization problem can be 

formulated as Eq. (10):  

 
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1

1
min

2

n
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i
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where i  and 
*

i  are two slack variables to cope with 

infeasible constraint of the optimization problem and 

represent the upper and lower boundaries of insensitive zone. 

Then Lagrange multipliers are used to solve a dual 

optimization problem in support vector machine. Finally, by 

exploiting the optimization problem in terms of kernel 

function takes the following formula Eq. (11):  
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where ia  and 
*

ia  are Lagrange multipliers. 
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IV. A DATA-DRIVEN APPROACH FOR NUMERIC INPUTS OF 

MODELS  

Numeric input vector of short-term accumulations 

forecasting models consisted of link accumulations in 

specific time intervals. This section presents an improved 

aggregation method to estimate accumulations using 

automatic license plate recognition data. Automatic license 

plate recognition data is collected by the automatic license 

plate recognition system embedded in urban road transport 

system continuously. Comparing the aggregation methods 

based on loop detector data and automatic license plate 

recognition data mentioned above, the latter method could be 

summarized as an estimating method which is more closed to 

the reality of link traffic states. 

A. Field Automatic License Plate Recognition Data 

Collection 

In order to derive the basic aggregation parameters of 

traffic state, this study uses automatic license plate 

recognition data to count and calculate arrivals, 

accumulations and departures of vehicles. The database are 

recorded by road cameras fixed on road gantries along roads. 

The items of travel status recorded by the road cameras are 

independent. One item contains corresponding vehicles’ plate 

number, vehicle type, velocity, and recording time. 

Compared to loop detector data, the automatic license plate 

recognition data can be used to capture characteristics when 

vehicles driving in sections. As shown in Figure 1, license 

information and dynamics characteristics of every vehicle can 

be recorded by two adjacent cameras of the Automatic 

License Plate Recognition System. 

 

 
Figure 1: Schematic picture about the dynamics of 

accumulations. 

The database utilized in this research was collected by 

automatic license plate recognition system from January 12nd, 

2015 to January 16th, 2015, which is recorded from 

eastbound vehicles by road cameras fixed on North Ring 

Road in Shenzhen, China. One section between the North 

Ring Xinzhou overpass and Mudhill Redridge overpass with 

length 6.4 km is considered in this study. The study area faces 

risk of congestion during rush hour of weekdays. Meanwhile, 

in order to match needs of control applications, schemes 

would be much more significative and effective during the 

time windows of rush hour. In this study, morning rush hour 

(from 7: 05 to 9: 25) and evening rush hour (from 17: 05 to 19: 

25) are selected as time windows. Data are grouped into 5 

minute intervals which contains one traffic signal cycle at 

least. 

B. Data-driven Approach for Accumulation Estimation 

The purpose of this section is to develop a method to derive 

link accumulation of road network exactly. The best-known 

method of estimating link accumulation is proposed in [1]. A 

refined MFD is reproducible and relates the number of 

circulating vehicles (or accumulation) to the network’s 

average speed (or flow). Thus, measuring link accumulation 

is pivotal to advancing the field of MFD estimation and 

application. Cameras record camera ID, vehicle’s license 

number, vehicle type, velocity, and recognition time. Traffic 

flow variables can be calculated using arrival and departure 

information. 

Link accumulation can be theoretically estimated by 

deviations of upstream arrivals and downstream departures. 

)(tni  is defined as the number of vehicles traveling on link 

i  at time t . )(tAi  and )(tLi  are defined as the cumulative 

number of vehicles have arrived and left link i  at time t , 

respectively. The urban link accumulation at time t  is 

derived by following formula )()(=)( tDtAtn iii  . Link 

accumulation in any time interval ],[ ttt   is derived by an 

aggregation formula dttntttn i

tt

t
i )(=),( 



 . 

In addition, it is important that computing the functions 

with appropriate database. The loop detector data only 

provide local snapshots of traffic states that are used as 

proxies for link traffic states (Leclercq et al., 2014). Therefore, 

the accurate accumulations should be analyzed and computed 

by considering effective computational method for link traffic 

states. 

In the following, a method is developed to count the 

freeway accumulations of vehicles in an independent interval 

based on automatic license plate recognition dataset. Let 
lV  

be a set of arrived vehicles on link l . ),( tttV l

i   

represents entry number i  of vehicles arriving on link l  in 

time interval ],[ ttt  . Define ],[ tntnt   as thn  

time interval. Let nU  be sets of time intervals, that is 

0},|],{[=  nNntntntUn . Meanwhile, define 

)),(( tttVT l

iarrived   as the time that vehicle 

),( tttV l

i   entering link l  in the moment. Define 

)),(( tttVT l

ileft   as the time that vehicle ),( tttV l

i   

exiting link l  in the moment. By definition, 

],[)),(( ttttttVT l

iarrived  , and 

)),(( tttVT l

ileft   may belong to ],[ ttt   or not belong 

to ],[ ttt  . 

If the moment of vehicle ),( tttV l

i   entering link l  

satisfy the following condition 

],[)),(( tntnttntntVT l

iarrived  , and the moment 

of vehicle ),( tttV l

i   exiting link l  satisfy the following 

condition ],[)),(( tntnttntntVT l

ileft  , it is 

reasonable to assume that the vehicle ),( tntntV l

i   is 

traveling on link l  in the time interval ],[ tntnt  , the 
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relation can be described as Eq. (12):  

})),((,)),((|),{(= n

l

ileftn

l

iarrivedleftarrived UtntntVTUtntntVTTTS 

      (12) 

For a finite set S , the unique natural number is called the 

cardinal number of S , abbreviated )(Scard . Obviously, 

the elements ),( leftarrived TT  of set S  are all independent 

time pairs. The cardinality of the finite set S  is a natural 

number, that is the number of time pairs ),( leftarrived TT  in 

the set S . 

Denote ),( tntntLAl   as the total number of vehicles 

are traveling on link l  in the time interval ],[ tntnt  , 

which is equivalent to the cardinality of set S . That is 

accumulations in time interval ],[ tntnt   can be derived 

exactly as Eq. (13):  

|=|)(=),( SScardtntntLAl                (13) 

The traffic flow parameters could be calculated by 

automatic license plate recognition data. Additionally, once 

the time pairs ),( leftarrived TT  of vehicles were determined, 

the travel time and travel speed could also be determined. 

Therefore, the aggregation traffic flow parameters could be 

used to estimate link traffic states. 

V. EXPERIMENTS 

A. Performance Measurements 

The automatic plate recognition data collected from a 

freeway in Shenzhen is used to express nonlinear interaction 

and to compare the predicting performance among proposed 

models. All experiments on short-term accumulations 

forecasting are calculated by Matlab R2014a on a laptop with 

a dual-core 2.50GHz CPU and a 2 GB RAM. 

To compare the prediction performance of the four models, 

the following four error measurements are used to describe 

the error and non-linear interaction between the actual value 

)(ka  and the predicted value )(kp , namely, the mean 

absolute error (MAE), the mean relative error (MRE), the 

mean squared error (MSE) and the root mean squared error 

(RMSE). 

The equation of MAE is calculated using Eq. (14):  

nkakpMAE
n

k

|)/)()(|(=
1=

  (14) 

The equation of MRE is calculated using Eq. (15):  

n
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kakp
MRE
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k
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
  (15) 

The equation of MSE is calculated using Eq. (16):  

nkakpMSE
n

k

)/|)()(|(= 2

1=

  (16) 

The equation of RMSE is calculated using Eq. (17):  

1/22

1=

))/|)()(|((= nkakpRMSE
n

k

  (17) 

B. Application of BPNN 

In particular, prediction models are information-processing 

systems that have specific performance characteristics with 

numerous simple processing elements called neurons or 

nodes, which can be applied in non-linear modeling fields. 

Meanwhile, it is imperative that prediction models should be 

compared in parameter selection and results. In order to make 

the models perform well, key parameters of each model are 

compared in the following model calibrating process by using 

the same non-linear data series of accumulations. 

Single hidden layer architecture is used in the BPNN 

model. A comparison of different number of neurons in the 

hidden layer are conducted to determine the optimal BPNN 

architecture. Figure 2(a) shows the RMSE and MRE for each 

prediction model with respect to the variations of key 

parameters. As shown in Figure 2(b), for BPNN, when the 

number of neurons in the hidden layer is around 15, the 

performance of model is most stable and accurate. 

 

 
(a) 

 
(b) 

Figure 2: Empirical results of BPNN model: (a)performance 

comparison among different values of key parameter and (b) 

prediction results. 

C. Application of WNN 

For WNN, the connection weights of the neural network, 

the expansion parameters and translation parameters of the 

wavelet function are initialized randomly. Then the initial 

value of the network learning rate, the error threshold, and 

maximum iterations are set up. These parameters will be 

modified by training algorithm. Figure 3(a) shows the RMSE 

and MRE for each prediction model with respect to the 

variations of key parameters. As shown in Figure 3(b), when 

the number of neurons in the hidden layer is around 20, the 

performance of model achieves best. 
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(a) 

 
(b) 

Figure 3: Empirical results of WNN model: (a)performance 

comparison among different values of key parameter and (b) 

prediction results. 

D. Application of RBFNN 

For RBFNN, prediction model is constructed via selection 

of the centers, the width, and the weights involved in the 

training procedure firstly. The default of maximum number 

of neurons in hidden layer is set to be the number of input 

vectors. The default of mean squared error goal is 0.001. 

Figure 4(a) shows the RMSE and MRE for each prediction 

model with respect to the variations of key parameters. As 

shown in Figure 4(b), for RBFNN, when the number of 

neurons in the hidden layer is around 65, the model performs 

best. 

 
(a) 

 
(b) 

Figure 4: Empirical results of RBFNN model: 

(a)performance comparison among different values of key 

parameter and (b) prediction results. 

E. Application of SVR 

For SVR, training algorithm includes selection of the 

penalty term C  and the Gaussian kernel parameter  , which 

controls SVR quality and strongly affects the performance of 

the model. Figure 5(a) shows the RMSE and MRE for each 

prediction model with respect to the variations of key 

parameters. As shown in Figure 5(b), when the value of 

penalty term and Gaussian kernel parameter is around (5,5), 

the performance of model is best. 

 

 
(a) 

 
(b) 

Figure 5: Empirical results of SVR model: (a)performance 

comparison among different values of key parameter and (b) 

prediction results. 

F. Comparison results 

This section compares accumulations dynamical 

prediction performances of the four short-term forecasting 

models. Table 1 compares the MAE, the MRE, the MSE, the 
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RMSE values and computational time of the BPNN, the 

WNN, the RBFNN, and the SVR. 

 

Table 1: Comparison among four performance indexes 

(BPNN, WNN, RBFNN and SVR) 

 MAE MRE MSE RMSE 
Computational 

Time(seconds) 

BPNN 46.14 0.11 4247 65.17 3.81 

WNN 48.27 0.12 5190 72.04 9.50 

RBFNN 293.54 0.69 44009 209.78 30.89 

SVR 285.25 0.71 40978 202.43 9.03 

 

As indicated in Table 1, the maximum MAE value of 

RBFNN is 293.54, whereas the minimum MAE value of 

BPNN is as low as 46.14. The MRE value of WNN and 

BPNN are around 0.11, whereas the MRE value of RBFNN 

and SVR are almost 0.70. It is shown that the predicting 

accuracy of the BPNN and the WNN models perform better 

than other two models. In addition, the RBFNN model costs 

30.89 seconds which takes much longer computational time 

than the other three models. The SVR and WNN models cost 

about 9 seconds. However, the BPNN model costs only 3.81 

seconds. This phenomenon is related to the number of 

neurons in hidden layer of RBFNN which is larger than other 

models, which costs much more computational time. 

Although the RBFNN and SVR have more robust learning 

process than the BPNN and WNN, the performance in the 

study of short-term forecasting of accumulations are not good. 

This phenomenon illustrates that the less number of neurons 

in the hidden layer is the crucial point which make models 

outperform than others. That is because models with less 

number of neurons in the hidden layer have a larger output 

feasible area. However, the RBFNN and SVR training 

function with small input space cannot satisfy the demands of 

short-term accumulations forecasting. Therefore, much more 

number of neurons in the hidden layer would be trained to 

satisfy the larger input space inevitably, which have bad 

effects on the fitting performance of nonlinear modeling. 

To reveal fluctuation variations of the four models, the 

MRE values of all models throughout the calculation period 

are computed. As shown in Figure 6(a), the variation range of 

MRE values of the BPNN model is between -1 and 0.5, and 

the gap of which is about 1.5. As shown in Figure 6(b), the 

variation range of MRE values of the WNN model is between 

-0.7 and 0.6, and the gap of which is less than 1.3. As shown 

in Figure 6(c), the variation range of MRE values of the 

RBFNN model is between -1.3 and 0.6, and the gap of which 

is about 1.9. As shown in Figure 6(d), the variation range of 

MRE values of the SVR model is between -0.5 and 1.4, and 

the gap of which is about 1.9. In addition, the MRE values of 

RBFNN and SVR models have higher values in the beginning 

and ending of the output dataset. In contrast, the MRE values 

of the WNN models have the smallest change and slightest 

fluctuation in the time series that can be observed. 

Additionally, the fitting effect of the WNN model is best 

among the four models. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: The relative errors from four prediction models. 

To summarize, accumulations can be dynamically 

predicted by the proposed models. However, there are some 

differences among them in terms of prediction accuracy, 

stability and computational time. The BPNN and the WNN 

models have better prediction accuracy and stability than the 

RBFNN and the SVR models. The WNN and BPNN models 

are found to be adaptive and have accuracy levels only a sixth 
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that of RBFNN and SVR models. Additionally, the four 

models can be improved by intelligent algorithm to make the 

learning process faster and much more robust. 

VI. CONCLUSION 

This paper introduces a new application area of short-term 

forecasting methods for dynamical prediction of link 

accumulations, which builds bridges between microscopic 

traffic flow dynamics and macroscopic system dynamics for 

traffic monitoring and management. Accumulations has been 

a main characteristic parameter for expressing traffic state in 

large urban networks. Accumulations is also the numeric 

input vectors of short-term accumulations forecasting models. 

The proposed data-driven approach for accumulation 

estimation captures traffic accumulations dynamically based 

on traffic arrivals, departures and network-aggregated 

demand. The accumulations in the context of MFD are 

derived from automatic license plate recognition data during 

rush hour, which gives an accurate calculation of actual 

accumulations. 

Four short-term accumulations forecasting models are 

tested by comparing their accuracy and efficiency, including 

BPNN, WNN, RBFNN and SVR. The key parameters of each 

prediction model are selected by referring to the training 

performance in case studies. Then the applicability of 

short-term accumulation forecasting models are compared 

based on their prediction performances. Comparison results 

show that the adequacy of WNN and BPNN appear more 

efficient than that of RBFNN and SVR in the short-term 

accumulations forecasting problem. Models with less number 

of neurons in the hidden layer have a larger output feasible 

area. However, the RBFNN and SVR training functions with 

small input space are not in line with the expectations of 

short-term accumulations forecasting problem. The choice of 

prediction model plays a crucial role in determining 

forecasting performance. The idealized WNN model with 

slight fluctuation has better prediction accuracy and stability 

than other models. In addition, the BPNN model is more 

feasible than the RBFNN and the SVR models in short-term 

accumulations forecasting problem. 

These findings based on multiple processes provide 

diverse perspectives to explore alternative solutions for 

short-term accumulations forecasting problem. The 

comparative case study gives strong dependence of the choice 

of prediction methods in the context of MFD-based control 

schemes. 

In the future, researches in this direction would continue 

with cross-comparing different responsive algorithms and 

prediction methods in the context of accumulation-based 

perimeter control schemes. Meanwhile, the selection of 

suitable forecasting time interval should be aggregated in 

proper resolution. Moreover, the results of short-term 

accumulations forecasting models can be used to deal with 

accumulation-based strategies, such as the optimal perimeter 

control based on real-time monitoring and traffic flow route 

guidance for evading saturated road sections. The empirical 

results in this paper can be extended to predict network-wide 

accumulations and macroscopic system dynamics.  

The short-term accumulations forecasting problem can be 

extrapolated to accumulations of subnetworks or large urban 

network. Modeling the dynamics of macroscopic system and 

developing real-time perimeter control schemes with 

accumulation-based strategies seem to be worthwhile. 

Moreover, the proposed methodology is expected to 

contribute to traffic flow control in the context of MFD with 

an unstable congestion state (usually during the rush hours). 

Optimal control strategies based on pattern recognition could 

also be developed to prevent the development of 

over-saturated states of traffic network. 
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