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Abstract. The process of determination of the field 

parameters in a strong electrical field using GR approach is 

presented. In that sense a new Relativistic Alpha Field (RAF) 

theory is employed. This theory extends the application of GRT 

to the extremely strong fields at the Planck’s scale. The solution 

of the field parameters α and α′ in a strong electrical field are 

obtained as the functions of the normalized electrical potential 

energy U. Energy-momentum tensor for electrical field is 

generated automatically from the left side of Einstein’s field 

equations. This tensor satisfies required properties of 

energy-momentum tensor for electrical field. Derivation of the 

related electrical force equations confirms valorization for a 

strong electrical field. In the weak electrical fields these 

equations are reduced to the well-known force relations. 

Finally, the related consequences of the solution of field 

parameters of strong electrical field using GR approach are 

pointed out. In that sense it is theoretically proved that an 

electrical field has no interaction with space-time, while a 

gravitational field has.  

Index Terms- Relativistic alpha field theory (RAFT), Strong 

electrical field, GR approach to electrical field, Determination 

of field parameters. 

 

I. INTRODUCTION 

    As it is well known, General Relativity Theory (GRT) 

1,2,3 cannot be applied to the extremely strong gravitational 

field at the Planck’s scale, because of the related singularity. 

Here we employ a new theory that is called Relativistic Alpha 

Field (RAF) theory 4,5,6. This theory extends the capability 

of the GRT for the application to the extremely strong fields 

at the Planck’s scale. Iven more, RAF theory can be also 

employed for determination of the field parameters in a 

strong electrical field using GR approach.  

   It is also well known, that for unification of the electroweak 

and strong interactions with gravity, one can use the 

following two possibilities 7-9: a) trying to describe gravity 

as a gauge theory, or b) trying to describe gauge theories as 

gravity. The first possibility (a) has attracted a lot of attention, 

but because of the known difficulties, this approach set 

gravity apart from the standard gauge theories. The second 

possibility (b) is much more radical. The initial idea has been 

proposed by Kaluza-Klein theory 7, which today has many 

variations 8,9, and takes the place in the modern theories 

like high energy physics (supergravity 10-12 and string 

theories 13-24). These theories use five or more extra 

dimensions with the related dimensional reduction to the four 

dimensions. Meanwhile, we do not know the answers to some 

questions like: can we take the extra dimensions as a real, or 

as a mathematical device?  
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    Therefore, in the references 5,6 it has been presented the 

unification of electrical and gravitational forces in the 

standard four dimensions (4D). This unification is based on 

the geometric approach by using RAF theory. Further, the 

unification of SR and GR and four fundamental interactions 

in RAF theory is presented in 25. 

   RAF theory starts with the main preposition: if the 

electrical, gravitational and unified fields (forces) can be 

described by the geometric approach, then the field 

parameters α and α′ of a particle in the electrical, gravitational 

and unified fields should satisfy the Einstein’s field equations 

and the Einstein’s geodesic equations. The propositions, 

related to the satisfaction of the Einstein’s field equations and 

the Einstein’s geodesic equations are proved in the second 5  

and third 6 parts of RAF theory, respectively. In 4 we 

show the solutions of the field parameters α and α′ of a 

particle in the electrical, gravitational and unified fields. If 

RAF theory is correct, then it could be applied to the both 

weak and strong fields at the Universe and Planck’s scales.  

   In this paper we present the application of RAF theory only 

to an extremely strong electrical field. In that sense we started 

with derivation of the field parameters α and α′ in an 

extremely strong electrical field as the function of the 

normalized electrical potential energy U. Than we presented 

derivation of energy-momentum tensor (EMT) for electrical 

field that is generated from the left side of the Einstein’s field 

equations. In that sense we do not need add by hand EMT on 

the right side of the Einstein’s field equations. Further, we 

presented the theoretical proofs that derived EMT satisfies 

required properties of energy-momentum tensor for 

extremely strong electrical field. In order to confirm that the 

obtained field parameters are valid in the extremely strong 

electrical field we presented derivation of the related 

electrical force equations. In the weak electrical fields these 

equations are reduced to the well-known force equations for 

the weak fields. Finally, we pointed out the consequences of 

the solution of field parameters of strong electrical field by 

employing GR approach. 

   This paper is organized as follows. In Sec. II, we show 

derivation of the relative velocity of a particle in an alpha 

field v as the function of the field parameters α and α′. 

Solution of the field parameters α and α′ in an alpha field, as 

the function of the normalized potential energy U is presented 

in Sec. III. Solutions of the field parameters α and α′ in an 

extremally strong electrical field is considered in Sec. IV. 

Energy-momentum tensor for electrical field is pointed out in 

Sec. V. Derivation of electrical force equations is presented in 

Sec. VI. Proofs that RAF theory satisfies required properties 

of energy-momentum tensor for electrical field is pointed out 

in Sec. VII. Consequences of the solution of field parameters 

of strong electrical field using GR approach are presented in 
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Sec. VIII. Finally, the related conclusion and the reference list 

are pointed out in Sec. IX and Sec. X, respectively.  

II. DERIVATION OF RELATIVE VELOCITY Vα IN AN ALPHA 

FIELD 

     The basic problem of this paper is to determine the field 

parameters α and α′ of a particle in an extremely strong 

electrical field. This derivation follows recently developed 

Relativistic Alpha Field Theory (RAFT) 4. The RAF theory 

is based on the following two definitions: 

     Definition 1. An alpha field is a potential field that can be 

described by two scalar dimensionless (unitless) field 

parameters α and α′. To this category belong, among the 

others, electrical and gravitational fields. 

     Definition 2. Field parameters α and α′ are described as the 

scalar dimensionless (unitless) functions of the potential 

energy U of a particle in an alpha field.  

   In order to solve the field parameters α and α′ in an 

extremally strong electrical field, we started with the 

derivation of the relative velocity of a particle in an alpha 

field, v . 

     Proposition 1.  If the line element in an alpha field is 

defined by the nondiagonal form with the Riemannian 

metrics 4 

 

   

 

2 2 2

2 2 2

x y

z

ds c dt cdt dt cdt dy

cdt dz dx dy dz ,

         

        

                                                                                           
(1) 

then the relative velocity of a particle in an alpha field, v , 

can be described as the function of the field parameters α and 

α’         

                    

 c
v v , 1.

2


  
                     (2) 

In the previous equation v is a particle velocity in the total 

vacuum (without any potential field), c is the speed of the 

light in a vacuum and  is a constant. Here, field parameters α 

and α′ should be described as the scalar dimensionless 

(unitless) functions of the potential energy U of a particle in 

an extremely strong electrical field.  

     Proof if the Proposition 1. The relation (2) has been 

proved in 4.  

 

III. SOLUTION OF THE FIELD PARAMETERS IN AN ALPHA  

FIELD 

    Proposition 2. Let m0 is a rest mass of a particle, U is a 

potential energy of a particle in an alpha field, c is the speed 

of the light in a vacuum and ( i ) is an imaginary unit. In that 

case the field parameters α and α′ can be described as 

dimensionless (unitless) functions of the potential energy U 

of a particle in an alpha field. There are four solutions for both 

parameters α and α′ in an alpha field that can be presented by 

the following relations: 

 
2

2 2
0 0 1

1 2 2

3 3

4 4

2 1

1 1 1

1 1

1 1

f (U ) U / m c U / m c , i f (U ) ,

i f (U ) , i f (U ) , i f (U ) ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ).

    

        

       

       
 

                                                                                           (3)         

   Proof of the Proposition. 2.  The relation (3) has been 

proved in 4.  

   Remarks 1. From the equations (3) we can see that there are 

four solutions of the field parameters α and α′ that reminds us 

to the Dirac’s theory. 

IV. SOLUTION OF THE FIELD PARAMETERS IN AN EXTREMELY 

STRONG ELECTRICAL FIELD 

   If a particle has an electric charge and is present in an 

electrical field, then the potential energy of the particle in that 

field Ue is described by the well-known relation 

                                   0e

qQ
U q A .

r
                              (4) 

Here q is an electric charge of the particle and A0 is a scalar 

potential of that field. The four solutions of the field 

parameters α and α′ for a charged particle in an extremely 

strong electrical field can be obtained by the substitution of 

the potential energy Ue from (4) into the general relations 

given by (3): 

 

 

2
2 2

0 0

1 1

2 1 2 1 3

3 4 3 4 3

2
2 2 2

0 0 0

2

1 1

1

1

0 2

e

e e

e

e

e

f (U ) qQ / m rc qQ / m rc ,

i f (U ) , i f (U ) ,

, , i f (U ) ,

i f (U ) , , ,

qQ m rc , qQ / m rc , f (U ) qQ / m rc .

  

     

         

         

    

                                                                                           (5) 

Here ( i ) is an imaginary unit and m0 is a rest mass of the 

charged particle. The first four lines in (5) describe a strong 

electrical field. The last line in (5) describes a weak electrical 

field.  

   It is easy to prove that the all αα′ pairs from (5) satisfy the 

following relations: 

2

2 2
0 0

2 2
0 0 2

0

2
0

1 1

0 1

i i

c

c

qQ qQ
, ,

m rc m rc

qQ
v E m c m c ,

m rc

E m c qQ / r .

   
          

   
   

 
      

 
 

 

= ' '

'     

                                                                                           (6) 

Here Ec is the covariant energy of the charged particle 

standing ( 0v  ) in an extremely strong electric field. 

   The differences of the field parameters (α-α′) for a charged 

particle in an extremely strong electrical field have the forms: 
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2

1 1 3 3 2 2
0 0

2

2 2 4 4 2 2
0 0

2
2

2
2

qQ qQ
( ) ( ) i ,

m rc m rc

qQ qQ
( ) ( ) i .

m rc m rc

 
        

 
 

 
         

 
 

(7) 

   Remarks 2. The αα′ term is a quadratic function of the 

potential energy of the charged particle in an extremely strong 

electrical field. But the related covariant energy Ec of the 

charged particle, standing ( 0v  ) in this field, is a linear 

function of that potential energy (see 6). This transformation 

is obtained here on the natural way, without any a priory  

assumptions.  

   In the references 4,5,6 it has been shown that field 

parameters (5) satisfy the Einstein’s field equations for 

extremely strong electrical field. Thus, in the case of the 

extremely strong static electrical field, the quadratic term 
2 2

0( qQ / m rc ) generates the related energy-momentum 

tensor Tη for the static field. For that case we do not need to 

add by the hand the related energy-momentum tensor Tη of 

the electrical field on the right side of the Einstein’s field 

equations. In the case of a weak static electrical field, the 

quadratic term
 

2 2
0 0( qQ / m rc )  , and the field parameters 

(5) satisfy the Einstein’s field equations in a vacuum (Tη = 0) 

(see the next section).  

V. ENERGY-MOMENTUM TENSOR FOR ELECTRICAL FIELD 

   The basic problem of this section is to determine the 

energy-momentum tensor for electrical field in the Einstein’s 

four-dimension (4D), by using the gravity (geometric) 

concept. Following the well-known procedure 1-6, the line 

element (1) can be transformed into the spherical polar 

coordinates in the nondiagonal form  

          

 2 2 2 2

2 2 2 2 2

ds c dt c dt dr dr

r d r sin d .

       

    
     (8)  

The line element (8) belongs to the well-known form of the 

Riemanns type line element. Starting with the line element 

(8) we employ, for the convenient, the following 

substitutions: 

                    
  2, / .                         (9) 

In that case the nondiagonal line element (8) is transformed 

into the new relation 

                  

2 2 2 2

2 2 2 2 2

2ds c dt cdt dr dr

r d r sin d .

     

    
          (10) 

The related covariant metric tensor gμη of the line element 

(10) is presented by the matrix form  

            

2

2 2

0 0

1 0 0

0 0 0

0 0 0

g .
r

r sin



  
 


      
 
  

     (11) 

This tensor is symmetric and has six non-zero elements as we 

expected that should be. The contravariant metric tensor gμη 

of the nondiagonal line element (10), is derived by inversion 

of the covariant one  

2 2

2 2

2

2 2

1 0 0

0 0

0 0 1 0

0 0 0 1

/ ( ) / ( )

/ ( ) / ( )
g .

/ r

/ r sin



        
 
        

     
 
 

 

     

                                                                                         (12) 

The determinants of the tensors (11) and (12) are given by the 

relations: 

                
 

 

4 2 2

4 2 21

det g r sin ,

det g / r sin .





        

       
 

         (13) 

   Proposition 3. If the electrical field is described by the line 

element (10), then the solution of the Einstein field equations 

determines the energy momentum tensor,T , of that field in 

the following form: 

             

 

 
 

00 01 10 11 22 33

2

2 2 2

4

0 0

1
8

e

e

e

T T ,T ,T ,T ,T ,T

G Q
, , , ,r ,r sin ,

G r

G q / m , A Q / r.

 

     


            

(14)   

Here q and m0 are an electric charge and a rest mass of the 

particle, while A0 is a scalar potential and Q is an electric 

point charge of the electrical field. Parameter Ge = q/m0 is a 

constant that remands us to the constant of motion in the 

geodesic equation of the Kaluza-Klein theory 5,7-9. 

   Proof of the Proposition. 3.  The relation (14) has been 

proved in 6.  

 

    Remarks 3. In order to make the solution (14) consistent to 

the related solution in a gravitational field, we should 

introduce the parameter
48 e ek G / c : 

     

 

 

00 01 10 11 22 334

2

2 2 2

4

8

1
8




  

      
  

e
e

e

e

G
k , T T ,T ,T ,T ,T ,T

c

G Q
, , , ,r ,r sin .

G r

    (14a) 

On the other hand, for the consistence to the Maxwell         

field theory, this parameter should be
2 48 e ek G / c :   

     

 
2

00 01 10 11 22 334

2
2 2 2

4

8

1
8




  

      
  

e
e

G
k , T T ,T ,T ,T ,T ,T

c

Q
, , , ,r ,r sin .

r

  (14b)        
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    VI. DERIVATION OF ELECTRICAL FORCE EQUATIONS 

   In the time-variant extremely strong electrical field the 

force equations (Fx, Fy, Fz) for a particle rest mass 0m is 

given by the relations 6: 

0 0 2 2

0

2 2

0 0 2 2

0

2 2

0 0 2 2

2
0 1

2

1

2
1

2

1

2
1

2

e e
x

e e

e e
y

e e

e e
z

G Q G Q x
, F m x ikm c

t rrc rc

m G Q G Q x
,

rr rc

G Q G Q y
F m y ikm c

t rrc rc

m G Q G Q y
,

rr rc

G Q G Q
F m z ikm

t rc rc

   
          

 
  

 

   
        

 
  

 

   
       

  

 

 

0

2 2
1e e

z
c

r

m G Q G Q z
.

rr rc




 
  

 

   

                                                                                         (15) 

   For a time-invariant (or very slowly changed) extremely 

strong electrical field, the relations (15) are transformed into 

the form valid for the electrostatic field: 

          

0
0 2 2

0
0 2 2

0
0 2 2

0 1

1

1

 
      

 

 
   

 

 
   

 

 





e e
x

e e
y

e e
z

m G Q G Q x
, F m x ,

rr rc

m G Q G Q y
F m y ,

rr rc

m G Q G Q z
F m z .

rr rc

    (16) 

The proof of the relations (15) and (16) is presented in 6. 

    Remarks 4. The electrical force relations given by (15) and 

(16) generally describe the interactions in the strong fields. In 

the case of the weak fields the force relations are reduced to 

the well-known descriptions of the interactions in the weak 

fields. Thus, from (16) we can see that the electrical field is a 

weak for
2 0e( G Q / rc   . In that case the term 

2
e( G Q / rc   in (16) can be neglected. On the other hand, the 

electrical field is a strong for
2

e( G Q / rc    . For an 

example, in the case of the hydrogen atom the amount of this 

term is 
2 -65.3250 10 0e( G Q / rc .    Thus, the 

electrical field of the hydrogen atom belongs to the weak 

fields. In the extremely strong electrical fields and extremely 

short distances, we may have situations where the 

term
2

e( G Q / rc   is close to unit
2

e( G Q / rc   , or even 

greater than unit
2

e( G Q / rc   . For those situations the 

term 
2

e( G Q / rc   cannot be neglected. 

 

 

VII. PROOFS THAT RAF THEORY SATISFIES REQUIRED 

PROPERTIES OF ENERGY-MOMENTUM TENSOR FOR 

ELECTRICAL FIELD 

     As it is well known from the quantum relativistic field 

theories of the other physical interactions, the energy 

momentum tensor (EMT) of massless boson field obeys the 

following three crucial conditions 26: 1) symmetry, 

T T  ; 2) positive energy density for static and free field, 

00 0T  ; and 3) zero trace,
 

0T  .  

     It is very important to prove if the EMT in RAF theory for 

electrical field also obeys the mentioned three crucial 

conditions. In order to prove this, we started with the matrix 

form of EMT for extremely strong electrical field (14) 

    

 
2

2 4

2 2

0 0

1 0 0

0 0 0 8

0 0 0



   
 
 
       
 
  

e

e

G Q
T .

r G r

r sin
(17)

 

   Symmetry condition. Following (17) one can see that the 

matrix in (17) has the symmetric form. This means that EMT 

in (17) satisfies the first crucial condition: 1) symmetry, 

T T  . 

   Positive energy density. In order to prove the condition of 

positive energy density for electrical static field, one can start 

with the element 00T of the EMT in (14) and the relation (6): 

    

 

 

0
0

2 2

00 4 2

22

00 002 4

1
8

1 0 0
8

e

e e

ee
e

e

Q q
A , G ,

r m

G Q G Q
T , ,

Gr rc

G QG Q
T , G Q T .

rc G r

 

 
      

  

 
     

 

' =

(18) 

Since the term 0eG Q  , one can conclude that energy 

density for electrical static field
 00T can only be positive 

quantity. Following the relation (18) we can see that EMT for 

static electrical field satisfies the second crucial condition: 2) 

positive energy density for static field. 

   The zero trace. In order to prove the third crucial condition 

of EMT: 3) the zero trace,
 

0T  , we have to calculate the 

trace of the EMT in (17): 

        

 
 

2

2

4

2

2 2
8

1 0




       
  

     

e

e

G Q
T g T ,

G r

T .

       (19) 

In the previous relations g
is contravariant metric tensor 

(12) of an electrical static field and T is the related 

covariant energy-momentum tensor (17). The relation 
2 1    is derived from the condition that the determinant 

of the metric tensor of the line element (10) should satisfy the 

relation (13) (see 4). 
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VIII. CONSEQUENCES OF THE SOLUTION OF FIELD 

PARAMEERS IN STRONG ELECTRICAL FIELD USING GR 

APROACH 

Instead of adding by hand of EMT of the strong electrical 

field on the right side of the Einstein’s field equations here it 

is generated from the left side of these equations.  

   No interactions of the strong electrical field with 

space-time. In order to theoretically prove it we can start with 

the relations (7) and (9): 

            
 

2

2 2
0 0

2

2

qQ qQ
i .

m rc m rc

   
      

 
 

     (20) 

From (20) we can see that all components in square root are 

positive numbers. Thus, the solution of the square root cannot 

be imaginary quantity in the strong electrical field. Therefore, 

the related solution of the parameter λ in (20) is imaginary 

quantity. Since the parameter λ physically describes 

interaction with space and time λ=g01=g10, one can concluded 

that interactions of the strong electrical field with space-time 

is imaginary. This theoretically confirms that no interactions 

of the strong electrical field with space-time. 

   In order to compare the solution (20) with the related 

solution in a strong gravitational field we can started with the 

solution of the parameter λ in a gravitational field 5: 

                        

2

2 2

2GM GM
.

r c r c

 
     

 

                      (21) 

Here G is gravitational constant, M is gravitational mass, r is 

gravitational radius and c is speed of light in vacuum. This 

relation can be described with the new form: 

                         

2 2

2
1

2

GM GM
.

r c r c

 
    

 
                    (22) 

Following (22) we can find out the characteristic point and 

regions of parameter λ : 

        

2 2

2

0
2 2

<
2

min real

imag

GM GM
r , r ,

c c

GM
r .

c

       

  

    (23) 

At the minimal radius rmin parameter λ is equal to zero. On the 

other wards, at rmin the free fall velocity is equal to zero, while 

the related acceleration is repulsive and maximal 4-6.   This 

means that gravitational mass cannot have its radius lass than 

rmin.  Thus, no singularity in a gravitational field. 

   There are interactions of the strong gravitational field with 

the space-time. The related theoretically proof is presented in 

the references 4-6. From (22) and (23) we can see that all 

solutions of parameter λ for minr r are real numbers. Since 

the parameter λ physically describes interaction with space 

and time, λ=g01=g10, one can concluded that interactions of 

the strong gravitational field with space-time are real. Thus, 

this is a brief theoretically confirmation that there are 

interactions of the strong gravitational field with the 

space-time. This is the crucial difference between strong 

electrical and strong gravitational fields. 

IX. CONCLUSION 

   Determination of the field parameters in a strong electrical 

field by using GR approach is presented. For this 

determination we employ a new Relativistic Alpha Field 

Theory (RAFT). This theory is useful because it extends the 

application of GRT to the extremely strong gravitational and 

electrical fields, including Planck’s scale. The generated 

energy-momentum tensor for a strong electrical field satisfies 

the well-known properties of EMT for electrical field. 

Valorization of the presented procedure is done by derivation 

of the related electrical force equations valid for a strong 

electrical field. Finally, the related consequences of the 

solution of field parameters of strong electrical field using 

GR approach are pointed out. 
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